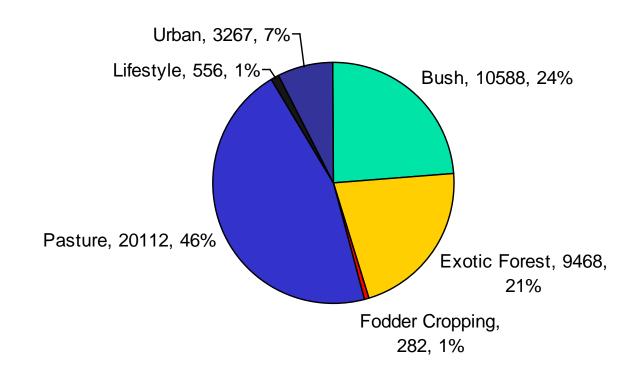
Lake Rotorua Catchment -Forward to a Better Future

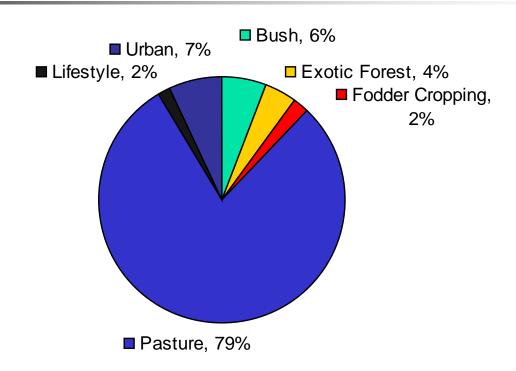
Lakes Water Quality Society


Overview of Challenge Task is large but the rewards are huge

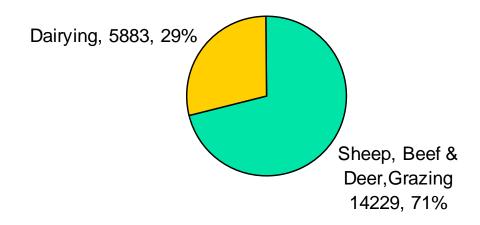
- An improving lake
- A wealthy community and a greater population
- A more diverse catchment with 30% retired from farming
- Sustainable dairy and sheep & beef farming
- Farming carbon
- Reductions in nutrient exports from the catchment achieved

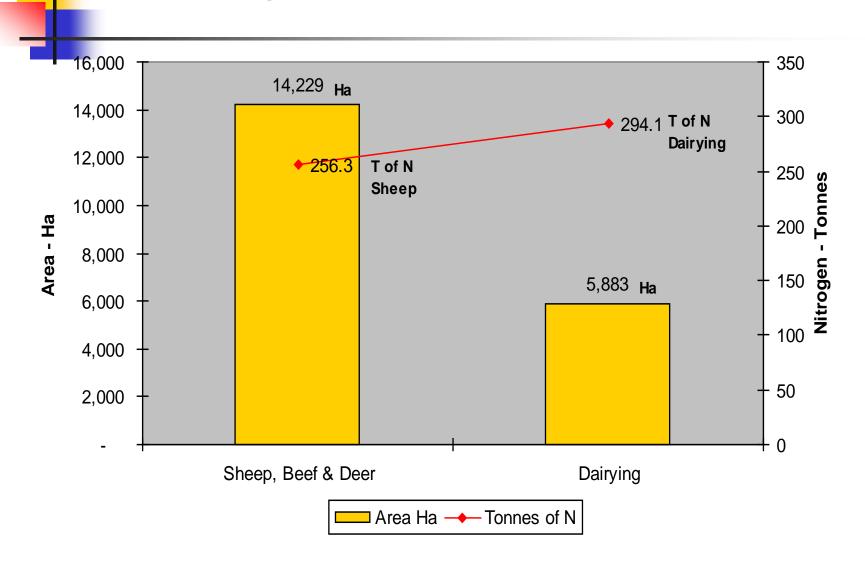
Delaying is Costly

- The lake continues to deteriorate
 - Impacts on Okere Arm and the Kaituna
 - Negative Impacts on
 - Tourism
 - Residential property
 - Wealth of District
- Investment in Changing of Land Use delayed
 - Farming needs certainty
 - Opportunities for rural subdivision restricted
 - Funding initiatives to stimulate change not in place


Land Use in Catchment - Hectares

■ Bush ■ Exotic Forest ■ Fodder Cropping ■ Pasture ■ Lifestyle ■ Urban


Nutrient Losses from the Land



Farming Area in Hectares

■ Sheep, Beef & Deer ■ Dairying

Farming - Area and Nutient Losses

Catchment Nutrient Targets t/N/y

	Current exports	746
Less	Sustainable load	435
	Required target	311
Less	Non-farming targets	80
	Catchment Nitrogen Reduction Target	231

This reduction equates to 41% of the nutrients from farming (Taupo 20%)

(All information derived from the Lakes Rotorua and Rotoiti Action Plan)

Non Farming Reductions - 80t N reduction

Current

- Sewerage reticulation and upgrade
- Stormwater Treatment
- Flocculation of Phosphorus
- Diversion of Tikitere

Options

- Sediment Capping
- Attenuation through weed beds
- Harvesting of Lake weed
- Diversion of Hamurana Stream

What are the Options available to Farming

- Change of Land Use Either Option
 - Removal of Dairying
 - Even if all removed insufficient to meet target
 - Significant reduction in GDP
 - Unlikely to be politically acceptable
 - Cost Estimated at \$136m
 - Large scale planting of Forestry
 - Would require the equivalent planting of all farm land excluding dairying land
 - Cost Estimated at \$142m

Best Farming Practices

- Required Best Farming Practices
 - Off farm out of catchment wintering of stock
 - The use of stand off pads
 - Large effluent storage capacity
 - Application of fertiliser in limited amounts and when not vulnerable to leaching
 - Use of nitrogen inhibitors
 - No wintering, on grazing land, of dairy stock in the Catchment
- Assisted nutrient reductions
 - Establishment of herd homes
 - Building of wetlands
 - Providing filters within streams
 - Other??

Forestry and Bio Mass

- Emission Trading Scheme passed into law this year.
- Currently the largest driver for change in Taupo
- Taupo trust currently purchasing N at \$400/kg, capital cost for N in perpetuity
- Secured against title by multiple agreements at varying levels
- Carbon is providing farmers an annual return of
 - \$20 to \$25/t @ 30t/ha = \$600 750/ha
- Strong economic case for change
- Well suited to Maori Land
- Will need to be facilitated to maximise outcome

Rural Subdivision for N reduction

- To achieve the desired outcome this is the most significant contributor in the kit
- Retired land defined as all land contributing
 8kg/ha N
- Low intensity organic type lifestyle farming would be permitted
- On retirement of 180kg of N one residential property could be subdivided as a right
- No public financial contribution to be payable

(Continued)

- Consideration to be given to not requiring any payment to RDC reserve or infrastructure
- 30% of catchment to be retired to achieve objective
- Initially land within the Rotorua caldera should be targeted as this will give the most rapid response
- To meet target need
 - 603 lots @180kg / lot = 108.5 t N removed
- Over 10 years this would be 60 houses per year

The Bucket

- Only achieved by a combination of choices
- Optimum outcome
 - Best farm practices 70% of land

Dairying 20% Sheep, beef, deer 10% = 59t N

Assisted Farming Practices

Dairying and establishment forestry = 63t N

Retired farm land – 30% of land

Subdivisional Rights granted = 109t N

Total 231t N

Cost of the Bucket

- Best farming practices Nil, requirement of farming, most are profitable.
- Retirement of land through subdivision Nil, community accept a change in landscape values and RDC don't collect any development levies
- Assisted farming practices and forestry under ETS
 - (Based on Taupo current cost)

63t at \$400/kg = \$25.2m

The District Economy

- 70% of all farming retained
- 30% lost from all classes

```
Dairying 1765ha @ Gross income of $7,000/ha = $12.354m
Other farming 4269ha @ $2,500/ha = $ 10.672m
```

Lost from Economy - Total \$23.026m

Offset by Change in Land Use

603 Residential Properties @70,000/ household= \$42.210m Cost of developing say 60 residential properties / year

@500,000 / property = \$30.000m

Forestry under ETS – 2250ha@ \$600/ha = \$1.350m

Gained by the Economy - Total \$73.560m

- Plus any increase in tourism from improving water
- All numbers need to have appropriate multipliers applied

Conclusions

- Lake Rotorua can be restored while:
 - Most dairy farming continues
 - Economy of District is improved
- Knowledge to achieve this already available
- Wise leadership required from RDC and EBOP and strong Counsel by Te Arawa